CSL4D : aim

Concept & Systems Learning for Design             CSL4D is an informal, private initiative for exploring the combined use of concept mapping and systems thinking for learning in business, development, and education. Originally, the D in CSL4D stood for Development, but in 2014 it evolved that the broader scope of ‘design’ was much more appropriate (see my 6 posts on design).

“Qualsiasi dato diventa importante se è connesso a un altro.” Umberto Eco*

Continue reading

Posted in Concept mapping, General, Meaningful learning, Systems thinking | Leave a comment

A concept map of Churchman’s general systems approach (update)

Below concept map is a representation of the present author’s understanding of Churchman’s general systems approach, mostly based on the description of the nine categories in ‘The systems approach and its enemies’ (Churchman 1979, 79-100). Reading a concept map of this nature is not something most people are used to. It looks like a plate of spaghetti. Some of the arrows are black and represent the general structure of S, which is any particular activity of humans, in organizations or otherwise, conceived as a system. Other arrows are light grey. They represent aspects of S, the importance of which is easier to understand once the general structure is in place. The first explanation will be done chunk by chunk, later to be followed by ‘inter-chunk’ clarifications. The four chunks in a way describe what soft systems thinking is about: using a general systems approach for planning the management of change to add value. And all this within certain limits: later on I will add a fifth, ‘constraints chunk’ for the remaining three categories left out of below concept map to avoid overwhelming the reader.

A good place to start is in the planning chunk. The systems approach is based on the idea that human activity is best conceived as a system. The concept of ‘system’ is complex, because humans and organizational settings are very diverse and complex themselves. The general systems approach applies to all human activity, both individual and social in all sorts of organizational settings, understood broadly, from family to state, from ideology to business, and from school to parliament. The conceptualization of such a human activity system is done by one or more persons in the role of a designer and is called a plan. It can and must be called a plan, because human activity is characterized by serving a purpose. This is a key link to the value chunk, but we will first deal with management. The inverted comma’s around ‘system’ indicate that there is no such thing as a perfect conceptualization. All meaning, structure or pattern is provisional and subject to debate. So we do wise to ask: What should be the purpose of the system? Who should the client be? And so on and so forth (Churchman 1977, 3).

The management chunk is about the management of the system components, which are subsystems that make up the system and that are designed to cluster activities geared to achieving cluster-specific system objectives. The system is open so it operates in an environment, which is beyond the control of the decision-maker, but may contain environmental factors that cannot be ignored. The boundary of the level of control is a design question as is the level of performance of the system. The components coproduce measures of performance, both enabled and constrained by the environment. These measures or indicators are used by the decision-maker to decide whether things go according to plan. If they do not, the decision-maker may allocate more or fewer resources (including human resources), stop or scale down the plan, or send a designer back to the drawing table. Most of the time, decision-makers prefer the first option, especially in the form of small, incremental steps.

The next chunk is the one dealing with change, the transformation chunk. The intended change is described in terms of objectives, both short-term and long-term. The objectives are established by the designer. They usually reflect some kind of ideal. Ideals can only be pursued in an approximate manner. This is most readily understood by looking at so-called input-output models, which is a common approach to systems of all kinds. In go people and money and out come products or services. Or, when we look at engines: in goes fuel and out comes mechanical energy. The ideal is that the energy value of the fuel is equivalent to the value of the mechanical output energy. This raises the question of efficiency. Churchman gives a description of the input-output model in Chapter 5 of The Systems Approach (1968, 61-78). Another question is that of trade-off between ideals. Because input-output models are relatively simple, they can be very useful in the early stages of system design. They are not very good in handling uncertainties.

This brings us to the fourth or value chunk. Churchman developed his general systems approach to increase the likelihood that human activity will produce some good of some kind. The Wall Street Crash of 1929, the ensuing Great Depression, and the Second World War made him acutely aware of the absence or deficiencies of guarantees in administration, economics and diplomacy that in the end the human condition will improve. Another problem is that of implementation. It is one thing to design interesting plans that address serious issues, but quite another to convince decision-makers that it should be executed. Some of the most frequent reasons for non-implementation are political, strategic, bureaucratic, cultural, or social  in nature. To ensure implementation, the designer must in some way activate the decision-maker.

It is important to note that among the nine categories, there are three so-called role categories: the client, the designer, and the decision-maker. In the words of Nelson (2003, 465), one of Churchman’s students, this “focus on people as the scaffolding of a system” differentiates the general systems approach from any other approach. Normally, people are “merely a set in a classification of elements,” but in the systems approach the emphasis is shifted to the functions served by people in a system. In Churchman’s “model one or more individuals can fill a particular role, or the same person can fill different roles at the same time.” This can be represented by a map. An example is the benefit-cost map for the “client” category to trace out where the benefits and costs go. In a business, customers enjoy the benefits of a service or product, but there are other clients, too: workers who receive a salary, manager who receive a higher salary and a bundle of perks, while shareholders receive dividends or higher share prices. The production of an influence map for decision-makers follows the same principles. The idea of role categories is one example of the ways in which the systems approach illustrates the pragmatist tradition “that – very broadly – understands knowing the world as inseparable from agency within it” (Legg and Hookway, 2019).

Five grey spaghetti arrows have not been explained yet. Let us start with the concept map proposition “transformation defines purpose”. This means that the purpose of an activity (or “why”) can be usefully clarified by stating how the purpose is planned to be realized. In other words, by stating the objectives. The next proposition is “client is standard for measures of performance”. Adequate measures of performance or indicators are often very difficult to design in a way that the decision-maker can use them in his management. The indicators must measure the increase in value as experienced by the client. The measures must also integrate the objectives in such a way to enable the decision-maker to stay on track to completion of the transition. This is summarized in the the next proposition, where the “decision-maker adaptively manages components.”  The final two propositions centre around the concept of mission: “plan contributes to mission” and “mission guides decision-maker.” The mission of an organization for which a decision-maker is responsible is a “statement of purpose: what the organization seeks to achieve over the long term. [… It] offers a pointer to the overall direction in which strategy will take the organization” (Grant 2008, 21). Mission statements are not always very clear, but they can be derived from the objectives of the plans the decision-maker chooses to implement.

A simple way of operationalizing the general systems approach is described in “Value Distribution Assessment Of Geothermal Development In Lake County, Ca” (Churchman, Nelson and Eacret, 1977). Nine basic questions do the job: (1) Who should the client be? (2) What should be the goals of the system? (3) Should there be a measure of performance for the system? (4) Who should the decision-makers be? (5) What components of the system should the decision-makers control? (6) What should the environment of the system be? (7) Who should be the planners of change in the system? (8) How should plans be implemented? (9) What should be the design of the control of the implemented
plan? Note that these questions are in the “should” or “ought” mode. For the sake of comparison they could also be asked in the “is” mode. Instead of these 9 questions, one could also turn the 27 propositional statements of the concept map into 27 “is” and 27 “ought” questions.  Considering that each question can be rephrased in many different ways, the total number of questions for one’s inquiry may easily exceed 100. These are not random questions, they are strongly inter-related and must also be considered in their inter-relatedness. That’s the power of Churchman’s general systems approach. It makes me think of Heinz von Foerster’s ethical imperative. Enjoy but don’t get lost.

Posted in General | Leave a comment

Dialectical Systems Learning

During the past month or so I have been ruminating over my post of May 10, 2019, which was about my latest effort to come to a better understanding of the workings of a systems approach described in a workbook that I am co-writer of. Wicked Solutions, as it is called, uses three operable systems concepts to explain systems thinking in a nutshell and encourages learners to apply them directly on a ‘wicked’ problem of their own so as to gain a direct, hands-on experience of their usefulness. The three concepts are: inter-relationships, perspectives, and boundaries. Last week I had a discussion with two members of staff of Australia’s Southern Cross University, Ken Doust and Andrew Swan, who has used Wicked Solutions in one of his courses. They had several critical observations that set me thinking. One idea was to focus the dialectical systems approach of Wicked Solutions around problem/solution trees to get a handle on engineering cases. When I told a close friend about it, he was so readily and overwhelmingly enthusiastic that I set to work integrating the idea into the insights gained in my previous post, all the while trying to keep things simple (as opposed to the spaghetti dragon of last time). So here it is:

(This post has been syndicated by The Systems Community of Inquiry to https://stream.syscoi.com, the global network of systems thinkers, scientists and practitioners)

Principles and methods     Churchman used to insist on the proper use of principles, rather than on the use of some method. This is probable one of the reasons why his dialectical systems approach, although brilliant, never caught on. It could be argued (as I did in my last post) that the learning cycle of Checkland’s Soft Systems Methodology is in fact a method that applies a good many of Churchman’s principles. This would imply that Churchman’s principles can and perhaps even must be used to fully understand Checkland’s method. (In fact, the idea of the principles-method dichotomy emerged while reading about the Darwin-Wallace controversy in the book ‘Krakatoa’ of Simon Winchester, a reading suggestion by Ken: thanks again!). This is not unimportant, because Wicked Solutions is to some extent based on both, either directly or indirectly.

Human activity models        … is the term used by Checkland to distinguish interventions from social systems, which he calls ‘human activity systems’. It occurred to me that human activity models can take many forms. One of the most common forms is that of linear management (see my post of 2013). The problem/solution tree approach is an adaptation of that form. The good thing about that approach, from a training perspective, is that it runs the risk of imposing early limits on the problem/solution space (see another post of 2013). Both Churchman’s principle of non-separability and his environmental fallacy refer to this risk. This means that the problem/solution tree approach can be used as an excellent starting point to show the benefits of the systems approach, to explain the epistemological nature rich picturing, to emphasize the need for stakeholder engagement as a way to apply the principles of deception-perception and make sure that assumptions that restrain the scope of a more systemic solution are brought to light.

Five steps       … are all that is needed for dialectical learning: rich picturing, framing of stakes, boundary debate, model selection, and feasibility analysis. Framing of stakes and boundary debate (or critique) are missing in Checkland’s SSM activity pattern that reflect the steps in his SSM inquiring/learning cycle. When I say they are missing, that does not mean that they must be necessarily included. It is just that for learners it is easier to have them included. It has the additional advantage that the learners can be assessed for following these steps. In Wicked Solutions the last steps of model selection and feasibility analysis are lacking. There, too, it does not mean that they had to be included. Most of the systemic process can be carried out in the first three steps. But some learners will think it unsatisfactory that these steps are lacking (as I did myself). The framing step is Bob William’s idea, whereas the boundary debate in the form of critical heuristics is Werner Ulrich’s contribution. Critical heuristics is often carried out on its own or prior to SSM.

Inquiry and design       It may be useful to look at the 5-step process from the angles of inquiry and design. Churchman and his principles are at the inquiry end of the process, while Checkland and his method is more on the design end. The actual conceptual design of novel solutions takes place somewhere in the middle. The last steps are just a clarification of what has been found in the earlier steps. This clarification is more apt to a methodological approach, whereas the development of novel concepts is a much more suited to an open-minded, principles-driven approach. The marriage of Churchman’s principles with Checkland’s method seems rather obvious. Checkland circumvented this ‘problem’ by insisting on ‘rich picturing’ as the first step, a step that was sorely missing with Churchman.

Principles and concepts       Churchman’s principles are scattered among his books and papers. He attempted to summarize them in his categorical framework, which is applying the principle of categorical assurance (where categories are about the  lack of inter- and intra-categorical assurance) as described in Edgar Singer’s ‘Experience and Reflection’, which was posthumously edited by Churchman in the period between his years devoted to the development of operations research and his last 16 or 17 years before his retirement devoted to the development of his systems approach. Bob Williams was the instigator of a meeting in 2004 in Berkeley to simplify systems concepts in a way that non-specialists could handle them more readily. These concepts were inter-relationships, perspectives and boundaries. He has successfully applied them in a book that provides an overview of a wide range of systems methods, for which he received the American Evaluation Association’s Paul F Lazarsfeld Evaluation Theory Award (for Bob’s books, click here). It is fairly easy to explain Churchman’s principles in terms of the three basic Berkeley concepts. This will prepare them for Bob’s introductions to other sections of the systems field, including that of systemic evaluation design, thus turning the various writings in a neat whole. And the development of assuring, synergetic ‘wholes’ is what systems thinking is all about.

Problem/solution trees    The end result of learner’s following the dialectical systems learning approach (still to be fully described) will be one or more alternative problem/solution trees. There are various ways of processing these trees into more refined models, using other approaches. One of the other criticisms of the two Australians was that Wicked Solutions lacked guidelines for stakeholder selection and engagement. There is probably no short answer. Two things spring to mind: 1. SSM has quite a body of practice that has been described in articles and books, some of them indicating how stakeholders were organized and encouraged to co-operate. 2. the Royal Tropical Institute has had considerable success applying a method called RAAKS, which is to some extent based on SSM principles, but which provides a considerable range of tools to enable stakeholder collaboration.

Posted in General | 1 Comment

Soft systems methodology revisited

Combining Checkland and Churchman for systems learning

This post has been syndicated by The Systems Community of Inquiry to https://stream.syscoi.com, the global network of systems thinkers, scientists and practitioners.

Systems concepts baffling     Over the past years I have been trying to get a better understanding of the workings of a systems approach described in a workbook that I am co-writer of. Wicked Solutions, as it is called, uses three operable systems concepts to explain systems thinking in a nutshell and get learners to apply them directly on a ‘wicked’ problem of their own so as to gain a direct, hands-on experience of their usefulness. The three concepts are: inter-relationships, perspectives, and boundaries (as in ‘boundary critique’), see also here. It may seem silly that I don’t understand the workings of a systems approach that I have used and written about myself, but I may well be in very good company.

John Poulter      …., in his talk about a closely related systems approach, explains that “what I realized was that I have been using SSM since I was a schoolboy but I’d never been able to explain to anybody what I was doing when I was analyzing their problems there and it was thanks very much to Peter [Checkland]’s articulation of SSM that at long last I was able to explain to not only to other people but myself what I was actually doing, what process I was following, the stage I’d got to, what I’d learned, and what was to come next and so on.” (online video fragment here). What this implies is that many people, including management consultants, use systems principles naturally, but they don’t realise that they are doing so in a fairly unstructured way, lacking the necessary rigour.

Soft systems methodology     Now I didn’t hit on the video with Poulter by accident. I was actually attempting to get a better overview of the main ‘systems approaches’ developed so far, which led me to a blog post of my own about soft systems methodology (SSM), which I had written in 2012. It was based on my reading of Chapter 5 of ‘Systems approaches to managing change: a practical guide’. Chapter 5 was actually a summary of a book by Checkland and Poulter ‘Learning for Action: a short definitive account of soft systems methodology and its use for practitioners.’ This chapter 5 is available online (e.g. here or here), and was summarized by me in the blog post of 2012 (not a very neat concept map, but then again the squarish concept maps are unforgivable sins against Checkland’s fried-egg preference). The fried-egg diagram that really got me fired up was Fig. 5.9, which I transformed into concept map C below. In my opinion the diagram is a good representation of soft systems approaches generally, which was just what I needed (but that’s for a next post).

Wicked Solutions      It occurred to me that by combining three fried-egg diagrams of Checkland and Poulter with a concept map of my own I could describe SSM on one page, which may help to make it a bit less “intellectually challenging” (quote from here). From there I made two major modifications: 1. I made the systems concepts of perspectives, inter-relationships and boundaries explicit in the elaboration of SSM activity pattern (concept map D, activity pattern element ‘i. exploration’); and 2. I added an element ‘ii. Dialectics’ in the activity pattern to the existing four (now five) in conjunction with the Wicked Solutions step of ‘stake analysis/framings’. In this way it is possible to show that Wicked Solutions covers the first parts of the SSM learning cycle, which could well serve as a powerful first learning experience for introducing students to systems thinking generally and both Checkland’s SSM and Churchman’s dialectical systems approach specifically. It is important to note that Wicked Solutions stops short of developing ‘conceptual activity models’, which means that it also doesn’t provide at present a model for doing so.

Dialectical systems approach       Churchman’s dialectical systems approach is indicated in concept map D by the concept ‘ii. Dialectics’ only. It is itself quite an elaborate approach as well, just like SSM, be it a bit more open to one’s own insights and preferences. I should add here that Wicked Solutions doesn’t use the classical Churchman approach, but a critical derivative developed by Werner Ulrich, a student and admirer of Churchman. Ulrich’s version is commonly known as critical heuristics or critical systems heuristics. The advantage of Ulrich’s version is that it is somewhat easier to use. The disadvantage is that it ignores a number of important insights of Churchman, although this is not necessarily a bad thing, especially where systems novices are concerned. There is more about Churchman’s dialectical systems approach here and elsewhere in the same blog. In the above framework Churchman seems to play a minor role, but this may be deceptive. To explain what Checkland is doing, it may be easiest to use Churchman’s original insights. I prefer to look at them as complementary and mutually explanatory (but that too is a good subject for a future blog post; I realize that I am promising a lot now).

Concept map explanation          I did not as yet provide a full explanation of the above concept map. Here it is: The LUMAS model is an overarching model that applies to all methodologies that seek to improve real-world problematical situations, in this case SSM. The model describes both the development of formal and informal methodologies as well as the learning process of its application, which is action-oriented, because of the complexity and dynamics of real-life situations. Different users may have different appreciations of a methodology, i.e. the application may differ for each user. In the case of soft systems, there are multiple users in multiple roles, from stakeholders or actors, planners and decision-makers or owners to customers. The SSM activity pattern h(bottom) is an elaboration of the more general SSM inquiring cycle (middle left). Churchman’s dialectical systems approach (ii. Dialectics) could be considered both an activity pattern and an inquiring cycle. In the form of critical heuristics it has been used many times as an important first stage in applying SSM. In a certain way Churchman (dialectics) and Checkland (SSM) are mutually explanatory and complementary. A  powerful first learning experience can be gained by introducing students just to elements i and ii of the activity pattern (see ‘Wicked Solutions’, Williams & Van ‘t Hof), using key ideas of both. SSM activity pattern (adapted): The central question to be debated is whether alternatives are likely to improve the problematical situation or not. To answer this question systemically 7 steps need to be followed, numbered in orange: 1. Rich picturing an acceptable representation of the problematical situation, the “is”. 2. Framing the problem and/or solution space. 3. Inquiring dialectically into  the “is” and suggestions of possible alternatives, “ought’s”, in the light of the key question, using systemic criteria or some other meaningful forms of systemic inquiry, based on Churchman’s framework of interdependent categories for judging purposeful activity systems. 4. Designing conceptual models of possible interventions using ideas generated in step 3.  5. Debating to compare the conceptual models designed in step 4.  6. Examining social, cultural and political feasibility and adjusting conceptual models to find mutual agreement. 7. Deciding on implementation or agreement or understanding. An image of the concept map with text can be downloaded from here. More explanations are available from Chapter 5 ‘Soft systems methodology’ by Checkland and Poulter (2010) and ‘Soft Systems Methodology: A Thirty Year Retrospective’ by Checkland (2000).

Posted in General | 1 Comment

Systemic evaluation design

Currently Bob Williams is preparing the second edition of his workbook on ‘Using systems concepts in evaluation design’ (available as a pdf for only 5$ from https://gumroad.com/l/evaldesign). It describes a practical systems approach to evaluation design. As Churchman explains in chapter 1 of “The systems approach” (available here), his dialectical systems approach was designed to first of all think about the function of systems, human systems such as organizations, policies and projects in particular, to reflect on their “overall objective and then to begin to describe the system in terms of this overall objective.” You may not be aware of it, but this is as revolutionary an idea today as it was more than half a century ago. It applies as much to systemic design as to systemic evaluation. The main take-away is that one cannot decide on an evaluation method without first looking into half a dozen systemic considerations. So buy that book. (This post has been syndicated by The Systems Community of Inquiry to https://stream.syscoi.com, the global network of systems thinkers, scientists and practitioners)

The key question         … (when we talk about evaluation) is: what exactly does it seek to achieve? In the case of evaluation this question must be asked twice: about the intervention (the so-called ‘evaluand’) and about the evaluation itself. Bob is one of the first to come up with a method to answer both questions systemically. I will try to describe this method as succinctly as possible by using a concept map, which is the bunch of spaghetti you see below. In the future, whenever you will eat spaghetti again, you will think back to this post. It’s not difficult.

The purpose      … of any intervention is to maximize value (to a client or beneficiary or customer) in terms of merit (intrinsic value), worth (relative value) or significance (meaningfulness, see also here), so evaluation is the attempt to assess how well the intervention is doing this. All three forms of value are important, but worth is particularly useful, because it expresses the notion of constraints or cost. This notion is considered again when we talk about the evaluation criteria, below. The emphasis on purpose is what forces us to consider systems thinking as the best way to go. Purpose is what makes us humans tick, even though we must figure out what the purpose of our actions is. But once we think we know what it is, there are many possible arrangements (or systems) for realizing it. Or we may decide to reconsider its importance and completely ignore it. Making arrangements requires a planner. Deciding what to do requires a decision-maker. So when we have a purpose, we have three roles: client, decision-maker and planner.

The evaluation client        Sometimes the three roles coincide in a single individual. Normally, when we talk of societal or organizational complexity they are highly differentiated. In systems thinking they are mixed up: a client may also be a planner (that’s when we speak of participation), or a decision-maker may be a client (she often benefits, i.e. enjoys some sort of value or quality ). This idea of roles, one of Churchman’s main contributions, can be applied to systemic evaluation. Conventionally, the evaluation client is the decision-maker of both the intervention and the evaluation. In systemic evaluation the evaluation client is the intervention as a whole, including the client and the planner.

Systems concepts         In October 2005, a group of evaluators (see contributors to Bob Williams’ ‘Systems concepts in evaluation’) convened at Berkeley University (which is exactly where C. West Churchman had done most of his work from the 1960s onward, in his case on the 6th floor of Barrows Hall) to figure out a way to explain systems thinking to uninitiated evaluators and decision-makers in simple terms without sacrificing its core principles and effectiveness. After two days in the pressure cooker they came out with the core concepts of inter-relationships, perspectives, and boundaries. What was new was not the concepts, but the idea that these three concepts are sufficient and necessary to explain systems thinking. I have played around with the concepts for a few years and my conclusion is that no explanation of effective systems thinking is complete without referring to all three of them (see e.g. here, here or here), leaving semantics aside.

Bob’s genius      … lies in the direct operationalization of these three concepts. People can actually use them without fully understanding how and why it works. Bob’s last two books were on systemic intervention design (Wicked solutions, co-written with me) and its complement, on systemic evaluation. By working the books (they are workbooks) one gets a direct understanding of the importance and application of the main principles. The main steps in the evaluation book follow the three basic concepts (2) exactly in that order: inter-relationships (to be mapped, 3), perspectives (to be framed, 4), and boundaries (to be critiqued: 5, 6 and 7).

Scope and focus   A basic systems principle is that of non-separability, which means that it is always a good idea to look at the larger picture, especially in complex problem situations. These are much more common than we sometimes admit. Scope and focus are boundary issues that can be addressed once we have framed the problem situation, i.e. broadly demarcated the problem and/or solution space. Scope (5a) is all that needs to be considered, focus (5a) is where we think most attention should go. The purpose (5b) of the evaluation must be broadly determined early on. Typical purpose categories are demonstration, improvement, and learning. For a purpose to be achieved it is necessary to prepare for the consequences (5c) of evaluation in terms of politics, ethics and/or practice (5d).

Evaluation, narrowly speaking        …. requires the collection of data using a method or methodology to see how an intervention performs. Standards must be set to compare the data with, but standards for what? Standards are the concrete expressions of more abstract criteria (6b) for assessing interventions. In Bob’s scheme these criteria are selected (6a) from eight categories, which are roughly derived from Werner Ulrich’s twelve critical systems categories (see the end of this post), which in turn are derived from Churchman’s twelve dialectical systems categories (see here). The questions to be answered are e.g. What standards could we apply to be sure that the intervention makes efficient use of the resources and doesn’t overlook certain environmental constraints (environmental in the sense circumstances), and so on and so forth.

Feasibility      … (7a) is mostly about the interrelated aspects of the allocation of sufficient resources and the selection of an adequate methodology for collecting and processing the necessary data (7b). Resources is a broad term and includes evaluators. There are more inter-relationships in the whole process. If we do not know what standards to apply, we cannot decide on the selection of a methodology. One must also consider the scope, focus, purpose and consequences. An important question is how to engage different perspectives in the whole process, since stakeholders playing the client and the planner roles in the interventions are also the clients of the evaluation. Sensible solutions will need to be devised in order to address these systemic issues. If not, the usefulness of evaluation will be very limited.

The evaluative mindset      … is perhaps best explained in this July 2018 video of Robin Miller (during the Out With It pre-meeting at the Royal Tropical Institute in Amsterdam)., who had the original idea for the Berkeley evaluation meeting (Williams 2007). Miller favours good qualitative studies over poor or premature quantitative, experimental ones. That fits very well with the systems approach advocated in this post. Miller lists eight reasons for evaluating: (a) to learn (including about undesired, unintended consequences); (b) to surface assumptions by multi-perspectival teams (e.g. about why we think certain interventions are good); (c) to help establish a compelling base of evidence for future interventions and policies that are actually implemented; (d) to use interventions to reflect what one values in them and what are one’s own values (significance); (e) to contribute to certain outcomes to occur (contribution rather than cause-effect attribution); (f) to discover and document needs; (g) to counter historical distortions in the base of evidence; and (h) to create an equal playing field in terms of the base of evidence when we talk about what is a meaningful, scalable, feasible intervention or intervention and one that responds to community needs, values and concerns.

Posted in General | 1 Comment

Systems thinking in three steps

Systems thinking is generally considered difficult, both to learn and to explain what it is about. Here is the latest of my efforts in this blog to make it simple. At the end is a concept map. It is self-explanatory, but only if you read the table above it very carefully. This post could be considered a follow-up to the previous one. It has been syndicated by The Systems Community of Inquiry to https://stream.syscoi.com, the global network of systems thinkers, scientists and practitioners. 

systems learning cycleThe three steps        …. are: (1) recognizing that some problems are socially and organizationally complex; (2) acquiring some basic knowledge of systems thinking, social systems thinking in particular; and (3) selecting one or more systems approaches to address the complex problem, at first arguably a generic systems method such as Churchman’s dialectical systems approach. The numbering is arbitrary: the three form what could be called the systems learning cycle, in which the three steps are interdependent. So, one needs some idea about social systems thinking in order to recognize the characteristics of socially and organizationally complex problems as requiring social systems thinking. And there is hardly a point in recognizing such complexity without having some confidence that specific systems approaches could be of some use. In practice one will need to go through the learning cycle a couple of times, before it all starts making good sense. (N.B.: I am convinced that the highly generic, dialectical systems approach of Churchman (1968, 1971, 1979) is a very good starting point for both learning and problem solving purposes).

Complex problems 101              Warren Weaver (1948, link in references below) was the first to recognize the need for a new class of problems, which he called ‘problems of organized complexity’. Their key characteristic is the fact that “they are interrelated into an organic whole,” which means that they cannot be analysed in their system-holistic essence quantitatively. Now more than 70 years ago he insisted that mankind must find some way of handling these problems, because “the future of the world depends on many of them.” About ten years later, in 1957, Herbert Simon, who was awarded the 1978 Nobel Prize in Economics, identified what he called ‘ill structured’ problems.” “In short, well-structured problems are those that can be formulated explicitly and quantitatively, and that can then be solved by known and feasible computational techniques” (or algorithms), whereas ill structured problems cannot. He went on to speculate that computers could be programmed to develop enough artificial intelligence (AI) to be able to handle ill structured problems better than any human decision-makers and managers. Since then, AI developed much slower than expected, so another 60 or so years later, Stephen Hawking agreed with Simon, in theory (!), but also warned that artificial intelligence could pose an existential threat to mankind (Russell et al. 2015). If it is true that artificial intelligence is the solution to mankind’s complex problems, then its application actually would seem to present a new, highly complex problem of its own.

Wicked problems          In 1972 (and 1973), Horst Rittel described in detail what he had called wicked problems in one of the weekly seminars of C. West Churchman at Berkeley in 1967. It was to admit that the use of computer technology to manipulate large numbers of variables in order to solve social problems such as urban renewal, environmental protection, the global food system, health services, and the prison and law enforcement systems had led to very disappointing results. Rittel lists eleven characteristics in 1972 and ten in 1973 and shows why these characteristics prevent the successful application of computer technology. This does not mean that computers cannot be very useful in some subordinate way, but they will never be able to crack the hard, wicked core of wicked problems in a convincingly satisfactory way. The ten differences between wicked and tame problems are summarized below in two forms: first a table, then a concept map. I let them speak for themselves.

tame and wicked problems characteristics - tabletame and wicked problems - concept map

References     

  • Churchman, C. W. (1968). The systems approach. New York: Delta. Retrieved here or here.
  • Churchman, C. W. (1979). The systems approach and its enemies. New York, London: Basic Books. Retrieved here or here (chapter abstracts) or here (summaries).
  • Churchman, C. West (1971). The design of inquiring systems: basic concepts of systems and organization. New York, London: Basic Books. Retrieved here.
  • Rittel, H. & Webber, M. (1973) Dilemmas in a General Theory of Planning, Policy Sciences 4 (1973), 155-169. Retrieved here.
  • Rittel, H. (1972) On the Planning Crisis: Systems Analysis of the ‘First and Second Generations’, Bedriftsøkonomen nr. 8 – 1972, 390-396. Retrieved here.
  • Russel, S. et al. (2015) Research Priorities for Robust and Beneficial Artificial Intelligence, AI Magazine (Winter 2015), 105-114. Retrieved here.
  • Simon, H. & Newell, A. (1958). Heuristic Problem Solving: The Next Advance in Operations Research. Operations Research, 6(1), 1-10. Retrieved here.
  • Weaver, W. (1948) Science and Complexity, American Scientist, 36: 536. Retrieved here.

This was a short explanation of the first step (or the second, if you like) in the systems learning cycle. In a previous post I gave a description of the second step to explain the need for social or soft systems thinking. In the next post I will discuss the dialectical systems approach. A simple, dialectical method for learning how to handle inter-relationships, perspectives, and boundaries (see concept map) can be found in Wicked Solutions. You can support my work (of writing an even more convincing sequel, of which this post is a part) by buying Wicked Solutions at Amazon.com. You will support me even more if you buy at Lulu’s. There is also a PDF at Gumroad for only $12. Your thinking will never be the same.

 

Posted in General | 1 Comment

Definitions of systems and systems thinking

There are no simple definitions of systems and systems thinking (Monat & Gannon 2015) that are sufficiently rich to clarify what they are essentially about. So instead, I will offer a circumscriptive definition in three parts and add a small concept map to go with it. This post has been syndicated by The Systems Community of Inquiry to https://stream.syscoi.com, the global network of systems thinkers, scientists and practitioners. 

Systems thinking       …. is the selection and application of more or less general systems methods or systemic problem solving tools to examine, debate, model, and modify systems structures, which underlie systems behavior. Systems thinking serves to identify and improve or understand the system behavior of a broad range of open systems.

Open systems      … consist of sets of at least two parts, elements, components or subsystems that are characterized by at least one interrelationship. The distinction between an open system and its environment is conceptualized by the system boundary. Open systems interact with their environment by receiving input and generating output.

Social systems    ….are open systems involving human actors (in roles as client/beneficiary, decision-maker, planner, see my ‘Concept map of Churchman’s categorical scheme for the inquiring system of a dialectical systems approach‘), who often have diverging, partially perceptive perspectives, which – in combination – may help them perceive non-linear systems behavior more fully. All humans are capable of systems thinking to varying degrees. Systems methods can amplify more mundane forms of systems thinking.

Non-linear patterns      … are what need to be changed in the case of (wicked) problems. These patterns are formed by inter-relationships connecting the various parts or subsystems. A well-known set of non-linear patterns is formed by Senge’s (or Kim’s) systems archetypes. In social systems these inter-relationships are intricately linked to the values of the actors involved. Aspects defining the problem situation include processes, world views, purposes, uncertainties, conflicts, and motivations. Some of the aspects are qualitative rather than quantitative.

Key operational concepts     …. are inter-relationships, perspectives, and boundaries. Inter-relationships and perspectives need to be mapped. Different perspectives must be combined to map them properly. Once a sufficiently comprehensive map is available the boundary of the system can be debated to rank inter-relationships and perspectives in terms of relevance with a view to understanding and changing the non-linear patterns. A simple method for learning how to handle inter-relationships, perspectives, and boundaries can be found in Wicked Solutions.

You can support my work (of writing an even more convincing sequel, of which this post is a part) by buying Wicked Solutions at Amazon.com. You will support me even more if you buy at Lulu’s. There is also a PDF at Gumroad for only $12. Your thinking will never be the same.

Posted in General | 1 Comment

The capability approach to social system design

This is my third and probably last consecutive blog post on the capability approach in about one-and-a-half week (here are 1 and 2). The capability approach was first articulated by the Indian economist and philosopher Amartya Sen in the 1980s. He has collaborated closely with philosopher Martha Nussbaum, who has provided the most influential version of a capability theory of justice. For more information see Thomas Well’s article on Sen’s Capability Approach. What interests me is the conceptual relationships between individualist foundation of the capability approach, freedom, development and the systems approach, especially C. West Churchman’s dialectical systems approach. I will make use of Nussbaum’s understanding of Aristotle’s ethics.

Social systems        …. can be anything, from a family to an enterprise, a project, a nation, a world region, or even an individual on his own, considering the complexities of the human subconscious. Churchman uses the term social systems a lot, most of the time in the short form ‘systems’ as in ‘the systems approach’ or ‘inquiring systems’. Aristotle was thinking mostly of the Hellenic city-state, the polis, as it had evolved from the 8th century BC onward (pdf with transcript of lecture on Nicomachean ethics here). In most of Sen’s research the social system corresponds to the nation state, especially in Asia and Africa.

Capability deprivation    … is the way in which Sen describes poverty. Nussbaum’s list of 10 central human capabilities is described here. So a landless farmer in India lacks control over his environment, he also suffers of poor health, especially poor reproductive health if most of his children die or suffer of growth retardation. Sen stresses the need to abolish ‘unfreedoms’ such   as   poverty,   famine,   starvation,   undernourishment,   tyranny,   poor   economic opportunities, systematic social deprivation,  neglect  of  public  facilities,  intolerance,  and  over-activity of repressive states. That’s quite something else than just having a low income. In the adjacent concept map I grouped Nussbaum’s list of capabilities in three categories: health (with three capabilities), reason (with two capabilities), and sense-making as in ‘making sense of one’s life or behavior in relation to certain choices’ (five capabilities).

Sensemaking     The five sense-making capabilities in my categorization are imagination/thought, emotions, affiliation, nature/other species, and play. They are social-emotional-creative in nature and seem to be loosely associated with developing an understanding of oneself as a self-actualizing human in relation to the middle layers of Maslow’s hierarchy of needs (the ‘pyramid’). In a previous post I linked the concept “sense of meaning” to 5 of the 10 capabilities. It is clear, though, that it is not self-evident to map Maslow’s hierarchy of needs on Nussbaum’s list of central capabilities, let alone to add a term like sensemaking to indicate the subset of capabilities that are not mostly physical (health) or rational (practical reason, management/control) in nature. That’s a lot of caveats, all for the sake of simplification to enable a better understanding.

Teleology      Self-actualization in the Maslowian sense may correspond roughly with a sense of one’s inner telos in the Aristotelian sense, which may guide one to leading a more full and complete life. Aristotle’s ethics are based on a teleological philosophy, which claims that the things around us have natural ends or purposes (sing.: telos), which are expressed or represented by their proper functioning. Health is a precondition for following one’s telos, while reason, especially practical reason, is one’s main tool, mostly by means of deliberation. Churchman argues that generally it is much easier to understand humans in teleological terms than by using mechanical categories (Systems approach and its enemies, p. 39).

Development   … is the core aim of international co-operation. The concept of development is not always well explained or understood. Development is in the first place associated with the creation of social systems (systems with people in them, see above). In the case of an agricultural development system in the South this may include a broad range of subsystems, including a natural ecosystem, an irrigation and drainage system, an agricultural mechanization system, an agricultural research system, a farmer communication system, an agricultural extension system etc. At a higher level there may be a political system, an administrative system, a health system, an education system, an economic system. All of these systems must work together synergistically for the best result. Development is also the managed increase in freedoms and capabilities to allow people to create more development in sense 1. Some freedoms and capabilities are in themselves gratifying and therefore worthy of development. That’s meaning 3.

Deliberation     …. Is a relatively slow process of weighing and examining pros and cons (and systemic inter-relationships using stakeholder perspectives) in decision-making. It assumes that Nussbaum’s 10 capabilities are sufficiently operational, especially when it comes to fathoming the inner telos of the key stakeholders and the rational understanding of the social systems concerned. Fathoming the inner telos is a whole-person issue with many dimensions, including personal and interpersonal ones related to credibility, validity, probability (or uncertainty), realism (idealism/materialism), trust, honesty, faith, expertise, motivation, attitudes, intentions, world views, personal growth and so on.

Design       People design themselves and the systems they live in. They have done so for the past 3 to 5 million years (see here). It is relatively fast non-evolutionary change that takes place on an evolutionary foundation. Design principles must take into account both the biological and psychological (so social) capabilities. The capability approach exhibits some of these principles, but so does the systems approach. The first is more people-oriented, the second more systems oriented. They are both generally applicable to problem situations such as development problems. There seems to be no particular difficulty that might prevent their combined application. In the case of the systems approach one can use the capability approach to look at the position of the beneficiary or client category. In the case of the capability approach one can use the dialectical systems approach to structure the deliberation. Try it, e.g. using a simple version of the dialectical systems approach as explained in Wicked Solutions.

Posted in General | Leave a comment

The capability approach, Aristotle, and the systems approach

Last week I blogged a post on the capability approach. I mentioned the two versions of the capability approach, the original one by Sen and the more Nicomachean version of Nussbaum. The term Nicomachean refers to Aristotle’s ethics, which Nussbaum is an acclaimed expert of and which must have influenced her take on the capability approach. Aristotle’s teleological ethics dominated Western thought for almost 2000 years, so there must be something to it. Strange then that I knew so little about it. In fact, until last week, I was hardly interested. Here follows my understanding of the relationship between Nussbaum’s angle on the capability approach, the Nicomachean ethics of Aristotle, and Churchman’s dialectical systems approach. Churchman hardly mentions Aristotle in his works, but he does consider his systems approach to be teleological in nature.

Nussbaum’s capabilities        Martha Nussbaum has written mostly about feminism and the capability approach (see here). In this post I will focus on what she calls the central capabilities. Her list of 10 central human capabilities is described here. They are: (1) Life; (2) Bodily Health; (3) Bodily Integrity; (4)  Senses, Imagination, and Thought; (5) Emotions; (6) Practical Reason; (7)  Affiliation; (8 ) Other Species; (9) Play; and (10) Control Over One’s Environment. I have played around with them in the blue box of below concept map. I changed the terminology a bit. Number 4 was changed in ‘imaginative expression’, number 5 was changed into emotional growth, and number 10 was changed into co-management. To me management implies control and co-management implies the social aspect of it. The capabilities are in Nussbaum’s view the necessary preconditions for individual freedom and development. This has implications for the way in which we promote societal freedom and development.

Freedom and development     The capabilities are in Nussbaum’s view the necessary preconditions for individual freedom and development. This has implications for the way in which we promote societal freedom and development. In order to be able to shape the political conditions for development basic human rights such as the right of political participation, and the protection of free speech and association must be guaranteed. This includes legal protection. Practical reason entails entails protection for the liberty of conscience and religious observance. The capability of social affiliation provisions of non-discrimination on the basis of race, sex, sexual orientation, ethnicity, caste, religion, national origin. Bodily integrity implies having opportunities for sexual satisfaction and for choice in matters of reproduction. Education in one form or another is crucial in stimulating imaginative expression and enabling practical reason. Practical reason can design justifiable plans to organize the co-management of environment whilst showing full concern for the other central capabilities. To all this I added systems thinking as one of the approaches to help practical reason to make good plans in a complex world, which seems to be the case even at the individual level.

Nicomachean ethics        … is quite a mouthful, but is not as difficult as it may seem at first. Besides it is about things we all have to deal with and think about, such as character, virtues, good habits and happiness or well-being (‘eudaimonia’). The name may have somehow come from Aristotle’s son, Nicomachus, who was named after Aristotle’s father. The Nicomachean ethics are based on a teleological philosophy, which claims that the things around us have natural ends or purposes (sing.: teleos), which are expressed or represented by their proper functioning. Humans have three categories of functions: vegetative, animal and human ones (see concept map or my post on Schumacher, a Thomist). The main teleos of the human functions is practical reason (or practical wisdom), which uses deliberation to examine and decide on options for human behaviour, ideally to enable living a more full, complete life. The human functions include moral and intellectual values, which are complex skills such as justice, courage, and temperance. Human character is what unifies these virtues in a way to balance the rational, emotional, and social areas of living. We must somehow acquire the necessary inner dispositions (or virtues). That is not always easy or obvious.

Systems approach       Now, 2368 years after it was written, Aristotle’s ethics still makes a lot of sense. And I have just scratched the surface of it (also using a lecture by Arthur Holmes, recorded on video in the 1980s and available here, highly recommended, just 35 minutes of your time!!!!). Richard Kraut, in his article on Aristotle’s ethics, speaks of an innovative “systematic examination of the nature of happiness, virtue, voluntariness, pleasure, or friendship.” I would prefer to call it systemic, because he also points out that “what we need, in order to live well, is a proper appreciation of the way in which such goods as friendship, pleasure, virtue, honor and wealth fit together as a whole.” Anything that is considered “as a whole” is considered systemically. My conclusion is that if human well-being requires a whole-system appreciation, both personally and socially, then the dialectical systems approach (see e.g. here) may well provide a generally applicable method for starting the necessary deliberation. This seems especially true since both Aristotle’s ethics as well as Nussbaum’s capabilities are highly systemic in nature. Another, more simple way of looking at all this is by taking all this in, both ethics and capabilities, and use them as general insights to be used in one’s application of the systems approach whenever the need arises. You may find both approaches useful. Just try it. With or without the help provided in ‘Wicked Solutions‘.

Posted in General | Leave a comment

The capability approach and the systems approach

In the world of international development Amartya Sen’s capability approach is well known, especially for its adoption by UN policy makers to formulate and justify the Millennium Development Goals and their successor set, the Sustainable Development Goals. The MDGs have been criticized for lacking an economic underpinning of the health, nutrition and education objectives, thus leading to unsustainable development. Having a background in international development myself, be it mostly from an agricultural perspective, I wanted to see if this critique was fundamental to the capability approach itself or whether it was just in its application. I picked up a serious introductory overview paper (Robeyns 2005) and produced a concept map (below), which I will describe. At the end I will add a few comments from the systems approach perspective.

 Amartya Sen       … is an Indian from West Bengal. He was born in 1933 on the campus of a university, where his father was teaching. The university had been founded by Rabindranath Tagore, who was the first non-European to win the Nobel Prize in Literature (acceptance speech), and who gave Sen his first name, Amartya, meaning immortal one or immortal soul. Sen became a Nobel laureate himself in 1998. His Nobel lecture about social choice theory can be found here. The theory of social choice asks whether it is possible to find a rule that aggregates individual preferences, judgments, votes and decisions in a way that satisfies minimal criteria for what should be considered a good rule (i.e. of a ‘good society’). The capability approach provides a theory for seeking an answer to that question.

The capability approach (#A)    …. is perhaps easiest to understand as a critique of welfare economics, which is an optimization theory that uses price-based measures to calculate the so-called social surplus (see middle part of concept map). Social surplus is the amount of welfare (value or utility) that a society has gained from the present consumption of all goods and services produced or bought. For more information watch the MIT OpenCourseware on Welfare Economics. The nice thing about welfare economics is that one can use mathematics for optimization studies. The trouble with it is twofold: 1. it emphasizes material well-being (humans are more than just consumers of stuff); and 2. It aggregates welfare across a large number of individuals (e.g. a society), so there is a risk of inequalities or injustices among them if that would produced the greatest welfare for the aggregated lot. This is the classical problem with utilitarianism in general. There is no reason, however, why utilitarianism or welfare economics could not be made to be more accommodating by incorporating certain weighting principles or by critically examining certain arguments (cf. Jonathan Baron in the final chapters of ‘Thinking and Deciding’)

The capability approach (#B)      … is dealt with in the red box. The basic mechanism is depicted in the top two rows. It all starts with a production apparatus (‘input production’) which supplies a range of goods and services that enable individuals to develop a set of capabilities from which he or she can chose to achieve certain functionings. These functionings are an express of what a person desires and can range from working to being healthy and from being part of a community to being respected within that community or the society at large. A large number of factors affect what capabilities a person is capable  of, including policies, social context and personal characteristics.

Martha Nussbaum        …. has given a twist to Sen’s capability approach by defining ten central capabilities, including life, health, integrity, meaning, emotional expression, practical reason, self-respecting empathy, life & environment, play, and control (for full description, see Internet Encyclopedia of Philosophy). Sen preferred not to define such a list, leaving the debate about them open for each situation. In the end it is the purpose that determines which capability has value and needs expressing. Nussbaum is a very good talker and organizer. I came across a very good talk (“Creating Capabilities: The Human Development Approach” in which she also discusses utilitarianism) here and a very good organization (Human Development and Capability Association, HDCA) here. It is interesting to note that the UK-based Open University is one of its institutional members.

Dimensions of advantage     (see green box:) Each person has under certain conditions certain advantages or lack thereof. They can be expressed in terms of basic needs satisfaction, freedoms and capabilities and become apparent as functionings. From an analytical point of view it is important at what level these advantages are evaluated, as consumer freedom, well-being freedom, or agency freedom. From a moral viewpoint agency freedom and agency achievement are the most important, because they allow a person to express his or her commitments to the well-being of others.

Aristotle, Smith & Marx       Sen and Nussbaum were in various ways influenced by Marx, Aristotle and Adam Smith. The latter’s ‘The Wealth of Nations’ is foundational to all free market thinking, which requires individual freedom for markets to function properly. This is very much at the basis of Sen’s capability approach. The Marxist and Aristotelian part is where Sen considers agency to be of the utmost importance to the meaning of human life. This goes far beyond the Pareto principle of welfare  economics, even to the extent that agency could be considered of a totally different dimension. The development problem is one of poverty and inequality. In Sen’s words “Development consists of the removal of various types of unfreedoms that leave people with little choice and little opportunity of exercising their reasoned agency.” In this sense the capability is about opening opportunities for agency rather than locking them in. The larger framework remains that of the market not government control.

Participation and empowerment      … are two terms that are often used in the modern development narrative. The question is: participation in what, empowerment to do what. Progress in the South is anything but simple if it has to be part of a cumulative process of sustainable development. It is unavoidable that in each situation advances must be made in terms of a mutually reinforcing set of development goals for such an effort to be in some way sustainable. It is the consideration of multiple goals that turns almost any such effort into a systemic one.

The systems approach        What Sen calls ‘reasoned agency’ then becomes the type of reflexive planning that has been described by C. West Churchman as a dialectical systems approach. Empowerment, in this (and my) view, is the application to a fairly specific local development challenge of the dialectical systems approach, which is not purely rational but contains necessarily political, moral, and aesthetic qualities. Participation is the dialectical aspect of it, provided, of course, that the beneficiaries of the development are themselves involved in the dialectics. Not just as beneficiaries, but also as co-planners and co-decision-makers. Perhaps I should add, as co-systems-thinkers. Churchman intended his systems approach to be of a general nature to get as broad an understanding of management as possible. Management is about justifying decision-making in complex situations. As a result of its generality the dialectical systems approach can provide a framework for unfolding the more intricate details of the capability approach or some other comprehensive approach for informing collective decision-making.

 

Posted in General | Leave a comment

A systems approach to address wicked problems

My last post was about the use of three basic systems concepts (inter-relationships, boundaries, perspectives) in evaluation design. The post before that was about C. West Churchman’s last great book ‘The systems approach and its enemies’ (1979). In this post I will combine the two in ways that are both subtle and broad. What I have been after the last few years is no less than the holy grail of systems thinking. Maybe this is it, but let’s not get our hopes too high. Besides there is always the temptation of a quest without an ending. Which resembles the human quest to improve his condition by ever redesigning his social systems.

The systems approach      … is the title of Churchman’s first book in his ‘systems approach’ trilogy (1968, 1971, 1979). The last book of the trilogy was called The Systems Approach and its Enemies. There was obviously a certain development in the cycle, which suggests that the last book holds the (final) key to the other two. I summarized the last book in the previous post (Churchman wrote one more book, Thought and Wisdom – 1982 – but that’s not part of the trilogy). As usual I made a concept map. I lifted the key part out of that concept map and put it in a red-bordered box.

Wicked solutions      … is the title of a book of which Bob Williams is the main author. Bob Williams has used three basic systems concepts (inter-relationships, boundaries, perspectives) in his published work and workshops in various ways. I put them in the green-bordered ‘wicked solutions’ box to the left. The next step was just a matter of linking the two boxes. The red arrows are about the origin of the wicked problem. I put “wicked” between quote marks, because it is quite normal that problems are not solved if one takes too narrow an approach to them (= environmental fallacy). It also makes a lot of sense to expand the boundaries of the system in which the wicked problem occurs so that one can properly see which inter-relationships (i.e. structures, patterns, processes, and dynamics) can be linked to the occurrence or emergence of the problem. If that is all, the systems approach is not all that interesting.

Dialectical heuristic        What makes the systems approach powerful and worthwhile is a tool in it, which I call the ‘dialectical heuristic’. This heuristic is a set of conceptual relations for the design and operation of all social or human systems, including manufactured items (an example of this can be gleaned from Conklin 2001 although he rather uses wicked problems concepts than dialectical heuristic concepts). Churchman developed this heuristic from his seminal work in operations research in the 1950s and his logico-philosophical studies in the 1930s. The starting point is that all human systems are teleological, ie. they serve the purpose of improving the human condition, which is necessarily all about value and meaning. If it is properly used, the dialectical heuristic applies certain systemic principles that Churchman discovered/developed/designed. Most people apply at least some of these principles quite naturally some of the time, but they do not do so consciously and consistently. The heuristic is used to for a comprehensive systemic inquiry of the problem situation.

Categorical roles     The proper use of the heuristic takes a conscious effort by the main stakeholders or most relevant actors involved. The main roles are those of the client (or beneficiary, but also in a negative sense as victim), the decision-maker, and the planner. Actors can play multiple roles, e.g. if a decision-maker may benefit in some way from the situation (e.g. by getting a good salary) he or she also plays the role of a client. I have explained at least some of this elsewhere, e.g. here or here.

Deception-perception       Of special importance are the principles of deception-perception. The trouble with human perception is that it can never be entirely objective, even if we try very, very hard and open-mindedly. Every way of perceiving obscures necessarily certain aspects of reality. Which is the reason why dialectics are necessary. Only by contrasting different perspectives can we get the fullest possible picture and can we reflect on the system boundaries that brings us closer to a sufficiently satisfactory solution to the wicked problem (this, by the way, is called satisficing, a term of Herbert Simon and not of Churchman, who preferred to talk in terms of approximation, something he had learned from Edgar A. Singer, himself a student of William James).

Enemies       There is one final thing. In 1979 Churchman added 3 more categories to his dialectical heuristic. The key one is: enemies of the systems approach. Later he would say that he regretted having called them enemies, but that’s not very important. The thing is that the first 9 categories in were part of the rational part of the heuristic, the last 3 are the irrational ones, or less rational ones. They include politics, morality, religion, and aesthetics. Politics is easy to understand: politics cannot work if it is purely rational, it also needs majorities or sufficient support in one way or another for implementation (another category in the heuristic) of any plan to be secured. Morality is what Churchman called the humanistic systems approach in his earlier work (e.g. Churchman 1968). Morality, too, does not always easily fit in a teleological framework, something utilitarianists will readily admit.

Sweeping in and unfolding        It is often said that the systems approach is about ‘sweeping in’ and ‘unfolding’. Unfolding is what people do when they apply the dialectical heuristic. Sweeping in, that is including additional inter-relationships that had not been considered earlier, is what happens by expanding the boundaries. The boundaries can be anything, not only physical things, but also mental or psychological aspects, often having to do with the world views of stakeholders.

Well, that’s it. More or less.

Posted in General | Leave a comment